

Sunny perspectives of PhotoVoltaics

Reduction of critical raw metals in heterojunction cells and modules

Eszter VOROSHAZI

Challenges of TW scale PV manufacturing

FIGURE 16 GLOBAL TOTAL SOLAR PV MARKET SCENARIOS 2022 - 2026

© SOLARPOWER EUROPE 2022

Abundance of elements in the Earth's upper crust (REEs are highlighted in red) (G. Haxel, 2018)

- Today 1 TWp installed PV capacity >10 TWp by 2030
- Material scarcity becomes a critical issue for the PV sector : Ag reduction is a must!
- Global context of increasing metal consumption by renewables

https://science.sciencemag.org/content/364/6443/836.full

Solar Power Europe, Global PV market Forecast, 2022

B. Hallam et al. 2022

LITEN DAYS 2022 - Eszter Voroshazi

Duality of increasing performance and

reducing Ag consumption

with novel cell and module interconnection technologies

Industry roadmap to reduce Ag consumption on cells

Innovations on heterojunction cell and module metallisation

- Cell metallisation with printing and plating using Cu,Al...
- Increasing efficiency with tandem cells
- Novel module interconnections

Evolutionary reduction of Ag consumption by <u>printing</u>

Ag screen-printing process optimisation

- Screen-printing process: screen angle and material design
- Cell metallisation design: thinner lines and increasing number of busbars

	Line width (µm)	Efficiency (%)	mg Ag / Wp
Ref	55	22,47	28,8
Improved	44	22,39	19,2

Evolutionary reduction of Ag consumption by <u>Cu based pastes</u>

Metallisation pastes with Cu core particles coated with Ag

Distruptive innovations of Cu by plating

Wet deposition techniques with 3 main approches:

- Electrolytic plating
- Light Induced plating (LIP)
- Dispense plating

Advantages

- Narrow finger width (<25µm)
- Low contact resistance

Challenges

- Complex process
- Reliability risk
- Waste treatment

In collaboration with

- Localized and free-form pattern
- Reduced waste and metal consumption

Increasing cell efficiency to lower Ag usage

Tandem Si/Perovskite

- Cell performance of 2T : 25.8 % on 9 cm² (CEA)
- Higher performance + considering the lower lsc of 2T tandem → potential < 5 mg/Wp

Multi BusBar soldering for PERT/TOPCon and also for HJT

MBB soldering for PERC/TOPCon

- Becoming industry standard
- ✓ Improved performance: reduced shading and Rs loss
- ✓ Reduced Ag consumption if small solder pads
- ! Pb content
- ! High T process > 200°

MBB compatibility proven with SHJ

- ✓ Indentification of Pb-free alloys
- ✓ High/medium T process compatibility on SHJ (stability 3 x IEC)

BusBar gluing with ECA for HJT and Tandems

BusBar soldering

- ✓ Industry standard
- Reliability proven process
- ✓ Low Ag consumption
- ! Pb content
- ! High T process > 200°C STOP

BusBar gluing with ECAs for HJT and TANDEMS

Electrically Conductive Adhesive

- Conductive particles (approx 50-70 w% Ag)
- Polymeric matrix

- ✓ First industry products >21% by ENEL and CEA-Liten
- ✓ Reliability proven process
- ! Medium Ag consumption (15 mg/Wp for ECA)
- ✓ Pb-free
- ✓ Low T process < 200°C
- L. Corentin et al., WCPEC 2022
- D. Tune et al., The sun is rising on conductive adhesives, PVI, 2022 Image: Longi

BusBar gluing with ECAs: strategies for further Ag reduction

- Introducing stencil printing and improved deposition accuracy (< 100 um)
- Optimized ECA deposit pattern and elimination of busbars/pads
- Ribbons with Ag-free coating
- Novel Cu-particle based ECAs

Roadmap to Ag consumption (cell+module) reduction to <25 mg/Wp

Combined cell and module innovations with Cu enable < 5-10 mg/Wp

Industrial stringer
@CEA- Liten PV Module platform

Sunny perspectives to tackle CRITICAL METAL usage in PV modules

Radical reduction of Ag metallisation is a must for TW scale manufacturing in PV

We must target 5 – 10 mg/Wp by 2030!

PV cell and module metallisation **pilot lines** @ CEA for new materials and technology qualifications

Recycling of Ag and metals for a circular PV industry

Reduction of other critical materials: Indium

Thank's for your attention